MARKING SCHEME CODE: D

SECTION A

1. (c) $-q L E \quad 1$
2. (a) red colour 1
3. (c) $1: 3 \quad 1$
4. (d) $R=0 \quad 1$
5. (a) Resistivity 1
6. (b) ferromagnetic material becomes paramagnetic 1
7. (a) electric field is changing 1
8. (a) move in a straight line 1
9. (a) binding energy per nucleon increases $\mathbf{1}$
10. (c) zero as diffusion and drift currents are equal and opposite 1
11. (b) just below the conduction band 1
12. (a) $\frac{1}{\epsilon_{0}} \quad 1$
13. (d) $\frac{1}{n^{2}} \quad 1$
14. (b) zero 1
15. (a) both A and R are true and R is the correct explanation of $A \quad 1$
16. (a) Both A and R are true and R is the correct explanation of $A \quad 1$
17. (d) A is false and R is also false 1
18. (a) Both A and R are true and R is the correct explanation of $A \quad 1$

SECTION B

19.

Significance

n-type semiconductor- small energy gap b / w donor level and conduction band which can be easily covered by thermally excited electrons. p-type semiconductors- small energy gap b / w acceptor level and valence band which can be easily covered by thermally excited electrons.
$O R$
When p-type semiconductor is joined with n-type semiconductor, e from the n-side diffuse towards p-side and holes from p-side diffuse towards n-sides leaving behind a layer of immobile +ve ions on n-side and immobile -ve ions on p-side leading to formation of depletion layer.
(Note: Award 1 mark, if a student draws a diagram showing depletion layer)
20.

Arrangement	1
two uses	$1 / 2+1 / 2$

Radiowaves < microwaves < X-rays < gamma rays

Uses of microwaves

1. Microwave oven $1 / 2$
2. in Rader system 1⁄2
3. Definition | Calculation of focal length | $\mathbf{1}$ |
| :---: | :---: |

One Dioptre is the power of a lens whose focal length is one metre.

$$
\begin{aligned}
& \frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& R_{1}=\infty, \quad R_{2}=-25 \mathrm{~cm}, \quad \mu=1.5 \\
& \frac{1}{f}=(1.5-1)\left(\frac{1}{\infty}+\frac{1}{25}\right)
\end{aligned}
$$

$$
f=50 \mathrm{~cm}
$$

22. As

$$
V=\frac{q}{C}
$$

$d W$ is the W.D. in giving additional charge $d q$

$$
\begin{aligned}
d W & =V d q=\frac{q}{C} d q \\
W=\int d W & =\frac{1}{C} \int_{0}^{Q} q d q=\frac{1}{C}\left[\frac{q^{2}}{2}\right]_{0}^{Q} \\
& =\frac{Q^{2}}{2 C}
\end{aligned}
$$

This work done is stored in the form of energy of capacitor.

$$
E=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2}=\frac{1}{2} Q V
$$

field inside a conductor	$\mathbf{1}$
just outside the sphere	$\mathbf{1}$

(a) Inside a conductor the electric field is zero because charges resides on the surface of sphere.
(b)

$$
\begin{aligned}
E & =\frac{1}{4 \pi \epsilon_{0}} \frac{q}{R^{2}} \\
E & =9 \times 10^{9} \times \frac{\left(1.6 \times 10^{-7}\right)}{\left(12 \times 10^{-2}\right)^{2}} \\
& =10^{5} \mathrm{NC}^{-1}
\end{aligned}
$$

\square
just outside the sphere
23. There are some devices which do not obey ohm's law and have non-linear I-V characteristics are called non-ohmic devices.
e.g., semiconductor devices like $p-n$ junction diode, thermistors etc.

$$
\frac{V}{I}=R \neq \text { constant }
$$

(for $p-n$ junction diode)
24. Magnetic field lines for a bar magnet and a current carrying solenoid resembles very closely.

Magnetic field on the axial line of a bar magnet is equal to the magnetic moment of an equivalent solenoid that produces the same magnetic field.

$$
\begin{equation*}
B=\frac{\mu_{0}}{4 \pi} \frac{2 M}{r^{3}} \tag{1}
\end{equation*}
$$

25. Totally reflecting prisms are used to change the path of a ray by 90° or 180°. These are the right angled glass prisms of refractive index 1.5 and critical angle
41.8°. In totally reflecting glass prisms, angle of incidence is made 45° (> C). Hence light suffers total internet reflection.

SECTION C

26.

Diagram	$\mathbf{1}$
Two advantages	$\mathbf{1 + 1}$

Cassegrainian Telescope

Advantages:

1. There is no chromatic aberration as the objective is a mirror.
2. Image is bright as compared to refracting type telescope.

OR

(i) Calculating fringe width	$\mathbf{1}$
(ii) Distance of fringes	$\mathbf{1 + 1}$

(i)

$$
\begin{aligned}
\beta & =\frac{\lambda D}{d}=\frac{600 \times 10^{-9} \times 1.6}{0.8 \times 10^{-3}} \\
& =1.2 \mathrm{~mm}
\end{aligned}
$$

(i) (a)

$$
\begin{aligned}
x_{3} & =\frac{5}{2} \frac{\lambda D}{d}=\frac{5}{2} \times 1.2 \\
& =3 \mathrm{~mm}
\end{aligned}
$$

(b)

$$
\begin{aligned}
x_{5} & =\frac{5 \lambda D}{d}=5 \times 1.2 \\
& =6.0 \mathrm{~mm}
\end{aligned}
$$

27.

Let

$$
I=I_{0} \sin \omega t
$$

$V_{R}=I R$ represented by $O R$
$V_{L}=I X_{L}$ represented by $O B$
$V_{C}=I X_{C}$ represented by $O C$

In $\triangle O P R$

$$
\begin{aligned}
(O P)^{2} & =(O R)^{2}+(P R)^{2} \\
V^{2} & =V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2} \\
E & =V=I \sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
I & =\frac{E}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}
\end{aligned}
$$

Here

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\text { Impedance of the circuit } \mathbf{1}
$$

Resistance offered by the L, C and R to the flow of current.

Impedance triangle

OR

At low frequency X_{L} is small but X_{C} is high and at high frequency X_{L} is high but X_{C} is small. But at a frequency when $X_{L}=X_{C}$ called as resonant frequency Impedance of LCR is minimum and current through the circuit is maximum.

$$
\begin{aligned}
X_{L} & =X_{C} \\
\omega L & =\frac{1}{\omega C} \\
\omega^{2} & =\frac{1}{L C} \\
\omega & =\frac{1}{\sqrt{L C}} \quad \omega-\text { Resonating angular frequency } \\
v & =\frac{1}{2 \pi \sqrt{L C}} \\
I_{0} & =\frac{E_{0}}{R} \quad \text { (max. at resonance) }
\end{aligned}
$$

Q-factor is the sharpness of curve at resonance.

$$
\text { Q-factor }=\frac{\operatorname{Pot}^{n} \text { drop across } L \text { or } C}{\operatorname{Pot}^{n} \text { drop across } R \text { at resonance }}
$$

$$
=\frac{I_{0} X_{L}}{I_{0} R}=\frac{\omega L}{R} \quad \text { and } \quad \omega=\frac{1}{\sqrt{L C}}
$$

Q-factor $=\frac{1}{R} \sqrt{\frac{L}{C}}$
28.

The process of splitting of energy levels can be understood by considering the different situations.
(i) When $r=d$ - No modification of energy levels.
(ii) When $r=c$ - Interaction b / w outermost shell electrons of neighbouring Si atoms increases and energy gap $\mathrm{b} / \mathrm{w} 2 N-3 s$ levels and $6 N-3 p$ levels goes on decreasing.
(iii) When $b<r<c$ - Instead of single $3 s$ and $3 p$ level, we get large no. of closely packed level.
(iv) When $r=b>a$ - The energy gap $b / w 3 s$ and $3 p$ levels completely disappears and all the 8 N levels are continuously distributed. One can say that 4 N levels are filled and 4 N levels are empty.
(v) When $r=a-4 \mathrm{~N}$ filled levels get separated from 4 N empty levels. 4 N filled level form a band called valance band and 4 N empty levels form a band called conduction band.
29. Let us consider two charges $-q$ and $+q$ separated by certain distance $2 a$ form a dipole of moment $p=q(2 a)$

$\vec{E}_{1}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{\left(r^{2}+a^{2}\right)}$ along PA due to $-q$ charge
$\overrightarrow{E_{2}}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{\left(r^{2}+a^{2}\right)}$ along extended BP due to $+q$ charge

$$
\left|\overrightarrow{E_{1}}\right|=\left|\overrightarrow{E_{2}}\right|
$$

Resolve $\overrightarrow{E_{1}}$ and $\overrightarrow{E_{2}}$ as shown in fig.
Net electric field

$$
\begin{aligned}
E & =E_{1} \cos \theta+E_{2} \cos \theta \\
& =2 E_{1} \cos \theta \\
E & =2 \frac{1}{4 \pi \epsilon_{0}} \frac{q}{\left(r^{2}+a^{2}\right)} \cdot \frac{a}{\left(r^{2}+a^{2}\right)^{3 / 2}} \\
E & =\frac{p}{4 \pi \epsilon_{0}\left(r^{2}+a^{2}\right)^{3 / 2}}
\end{aligned}
$$

for ideal dipole $2 a \approx 0$

$$
E=\frac{p}{4 \pi \epsilon_{0} r^{3}}
$$

30. Application of KVL on loops

Calculation of I_{1}, I_{2}, I_{3}

Apply KVL on loop EABCE

$$
\begin{align*}
10 & =10\left(I_{1}+I_{2}\right)+10 I_{1}+5\left(I_{1}-I_{3}\right) \\
2 & =5 I_{1}+2 I_{2}-I_{3} \tag{1}
\end{align*}
$$

Apply KVL on loop ABDA

$$
\begin{align*}
10 I_{1}+5 I_{3}-5 I_{2} & =0 \\
I_{2} & =2 I_{1}+I_{3} \tag{2}
\end{align*}
$$

Apply KVL on loop BCDB

$$
\begin{align*}
5\left(I_{1}-I_{3}\right) & =10\left(I_{2}+I_{3}\right)-5 I_{3}=0 \\
I_{1} & =2 I_{2}+4 I_{3} \tag{3}
\end{align*}
$$

On solving we get

$$
\begin{aligned}
& I_{1}=\frac{4}{17} \mathrm{~A}, \quad I_{2}=\frac{6}{17} \mathrm{~A}, \quad I_{3}=\frac{-2}{17} \mathrm{~A} \\
& \therefore \quad I_{1}+I_{2}=\frac{10}{17} \mathrm{~A} \\
& I_{1}-I_{3}=\frac{6}{17} \mathrm{~A} \\
& I_{2}+I_{3}=\frac{4}{17} \mathrm{~A} \\
& \text { SECTION D }
\end{aligned}
$$

31. (i) (c) mutual Induction

1
(ii) (c) frequency $\quad \mathbf{1}$
(iii) (d) soft iron 1
(iv) (b) $2 A$

OR
(a) reduce the energy loss due to eddy currents
32. (i) (a) Photoelectric effect
(ii) (a) Photons exert no pressure 1
(iii) (d) zero
(iv) (b) No. of photons

OR

$$
\begin{aligned}
E & =n h v \quad \text { or } \quad n=\frac{E}{h v} \\
n & =\frac{6.62}{\left(6.62 \times 10^{-34}\right) \times 10^{12}} \\
& =10^{22}
\end{aligned}
$$

SECTION E

33. Diagram

Observations
Distance of closest approach

Observations:

1. Most of the α-particles pass without deflection.
2. Large no. of α-particles are scattered by very small angle.
3. Small no. of α-particles are scattered by large angle.
4. A very few no. of α-particles (1 in 8000) retraced their path.

Distance of closest approach: It is the minimum distance of α-particle from nucleus at which K.E. converts into P.E.

2

Difference b / w nuclear fusion and fission	$1 \frac{1}{2}+1 \frac{1}{2}=3$

(i) Nuclear fission: It is a phenomenon of splitting of a heavy nuclei $(A>200)$ into two or more lighter nuclei.

$$
{ }^{235} \mathrm{U}_{92}+{ }^{1} n_{0} \longrightarrow \quad{ }^{141} \mathrm{Ba}_{56}+{ }^{92} \mathrm{Kr}_{36}+3^{1} n_{0}+\mathrm{Q}(200 \mathrm{Mev}) \quad \quad \mathbf{1} \frac{\mathbf{1}}{\mathbf{2}}
$$

Nuclear fussion: It is the phenomenon of fusing two or more lighter nuclei to form a single heavy nucleus

$$
{ }^{2} \mathrm{H}_{1}+{ }^{2} \mathrm{H}_{1} \longrightarrow{ }^{4} \mathrm{He}_{2}+24 \mathrm{Mev}
$$

(ii) Acc. to de Broglie, a stationary orbit is that which contains an integral number of de Broglie waves associated with revolving electron

$$
\begin{equation*}
\text { Total distance covered } 2 \pi r_{n} \tag{1}
\end{equation*}
$$

\therefore For permissible orbit $2 \pi r_{n}=n \lambda$
$\lambda=\frac{h}{m v_{n}} \quad$ Put in (1)
$\Rightarrow \quad 2 \pi r_{n}=\frac{n h}{m v_{n}}$
or

$$
m v_{n} r_{n}=\frac{n h}{2 \pi}
$$

which is the quantum condition proposed by Bohr in second postulate.
34. Diagram principle
Construction 11⁄2
working

1

Principle: When a current carrying coil placed in magnetic field, it experiences a torque.
Construction: It consists of a rectangular coil PQRS of large no. of turns of insulated copper wire wound over a non-magnetic material frame. A soft iron cylindrical core is placed such that coil can rotate without touching it. Coil is suspended b / w two cylindrical magnets by a phosphor brozne wire. Upper end of the coil is connected to movable torsion head and lower end is connected to hair spring.
Working: Function of cylindrical core and magnet is to provide radial magnetic field.

$$
\tau=n I A B
$$

If k is the restoring torque per unit twist and θ be the twist in the wire.

In equilibrium

$$
\begin{aligned}
\tau & =\tau_{R} \quad \text { (Restoring torque) } \\
n I A B & =k \theta \\
I & =\frac{k \theta}{n A B} \\
& =G \theta \quad \text { where } G=\frac{k}{n A B} \text { galvanometer constant }
\end{aligned}
$$

$I \propto Q$ i.e, linear scale deflection
OR

Consider a rectangular coil of length l breadth b.

$$
S P=Q R=l ; \quad P Q=R S=b
$$

θ angle made by plane of coil with mag. field
$\vec{F}_{1}=I b B \sin \theta$ on $R S$ acting \perp to both acting upward given by Right Hand Thumb Rule.
$\vec{F}_{2}=I b B \sin \theta$ on $P Q$ acting downward given by Right Hand Thumb Rule.
$\vec{F}_{1} \& \vec{F}_{2}$ are equal and opposite hence cancel each other.
$\vec{F}_{3}=I l B \sin 90^{\circ}=I l B$ acting on $Q R$ inwards by Fleming Left hand Rule.
$\vec{F}_{4}=I l B \sin 90^{\circ}=I l B$ acting on $S P$ outwards by Fleming Left hand Rule.
$\vec{F}_{3} \& \vec{F}_{4}$ are equal but not acting along same line and form a couple which moves the coil in magnetic field.
Torque $=$ force \times arm of couple.

$$
\begin{aligned}
\tau & =I l B(\mathrm{RT}) \\
& =I l B b \cos \theta \\
\tau & =I A B \cos \theta
\end{aligned}
$$

where $A=l b=$ area of coils
Let α is the angle b / w normal to the coil and magnetic field then

$$
\begin{aligned}
\alpha+\theta & =90^{\circ} \\
\theta & =90-\alpha
\end{aligned}
$$

If $n-$ no. of turns then

$$
\begin{aligned}
\therefore \quad \tau & =n I A B \cos (90-\alpha) \\
& =n I A B \sin \alpha
\end{aligned}
$$

$$
\tau=M B \sin \alpha \quad \text { M- mag. dipole moment }
$$

35. (i) Ray diagram

In $\triangle A B P$ and $\triangle A^{\prime} B^{\prime} P$

$$
\begin{equation*}
\frac{A B}{A^{\prime} B^{\prime}}=\frac{P B}{P B^{\prime}} \tag{1}
\end{equation*}
$$

In $\triangle A B C$ and $A^{\prime} B^{\prime} C$

$$
\begin{equation*}
\frac{A B}{A^{\prime} B^{\prime}}=\frac{C B}{C B^{\prime}} \tag{2}
\end{equation*}
$$

from (1) \& (2)

$$
\frac{P B}{P B^{\prime}}=\frac{C B}{C B^{\prime}}=\frac{P B-P C}{P C-P B^{\prime}}
$$

$P B=-u$,

$$
\begin{aligned}
P B^{\prime} & =-v, \quad P C=-R \\
\frac{-u}{-v} & =\frac{-u-(-R)}{-R-(-v)} \\
2 u v & =v R+u R
\end{aligned}
$$

Divide by $u v R$

$$
\begin{array}{rl}
u=-10 \mathrm{~cm} & f=\frac{R}{2}=\frac{-15}{2} \mathrm{~cm} \\
\frac{1}{f} & =\frac{1}{u}+\frac{1}{v} \\
\frac{-2}{15} & =\frac{1}{-10}+\frac{1}{v} \\
\frac{1}{v} & =\frac{-2}{15}+\frac{1}{10} \\
v & =-30 \mathrm{~cm} \\
& \text { Image is real and inverted } \\
m & =\frac{-v}{u}=-\frac{(-30)}{(-10)}=-3 \\
& \text { Image is magnified } 3 \text { times. }
\end{array}
$$

OR

Def. of Refraction	$\mathbf{1}$
Diagram	$\mathbf{1}$
Derivation	$\mathbf{3}$

Refraction of light is the phenomenon of change in path of light when it goes from one medium to another.
Refraction from denser to rarer at convex spherical refracting surface.

Apply Snell's law

$$
\begin{align*}
\frac{\mu_{1}}{\mu_{2}} & =\frac{\sin i}{\sin r} \approx \frac{i}{r} \\
\mu_{1} r & =\mu_{2} i \tag{1}\\
i & =\gamma-\propto \quad \text { and } \quad r=\gamma+\beta
\end{align*}
$$

Put in (1)

$$
\begin{aligned}
\mu_{1}(\gamma+\beta) & =\mu_{2}(\gamma-\propto) \\
\mu_{1}\left(\frac{A M}{M C}+\frac{A M}{M I}\right) & =\mu_{2}\left(\frac{A M}{M C}-\frac{A M}{M O}\right)
\end{aligned}
$$

If aperture is small, then

$$
\begin{aligned}
& \mu_{1}\left(\frac{1}{P C}+\frac{1}{P I}\right)=\mu_{2}\left(\frac{1}{P C}-\frac{1}{P O}\right) \\
& P O=-u, \quad P C=-R, \quad P I=+v \\
& \mu_{1}\left(\frac{1}{-R}+\frac{1}{v}\right)=\mu_{2}\left(\frac{1}{-R}-\frac{1}{-\mu}\right) \\
& \frac{\mu_{1}}{-R}+\frac{\mu_{1}}{v}=\frac{\mu_{2}}{-R}-\frac{\mu_{2}}{-u} \\
& \frac{\mu_{2}}{-\mu}+\frac{\mu_{1}}{v}=\frac{\mu_{1}-\mu_{2}}{R}
\end{aligned}
$$

