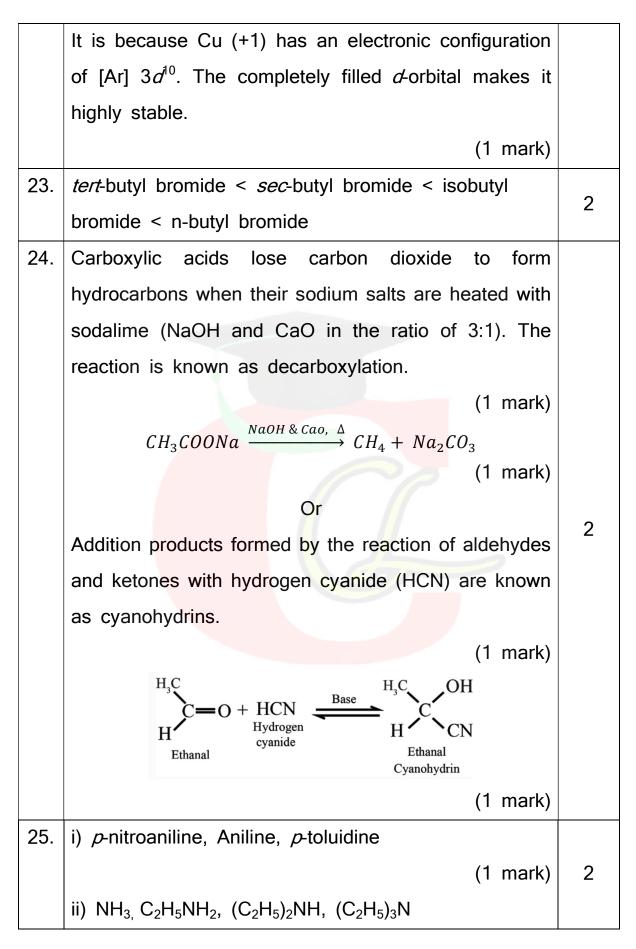
BSEH MARKING SCHEME

CLASS- XII Chemistry (March-2024) Code: B

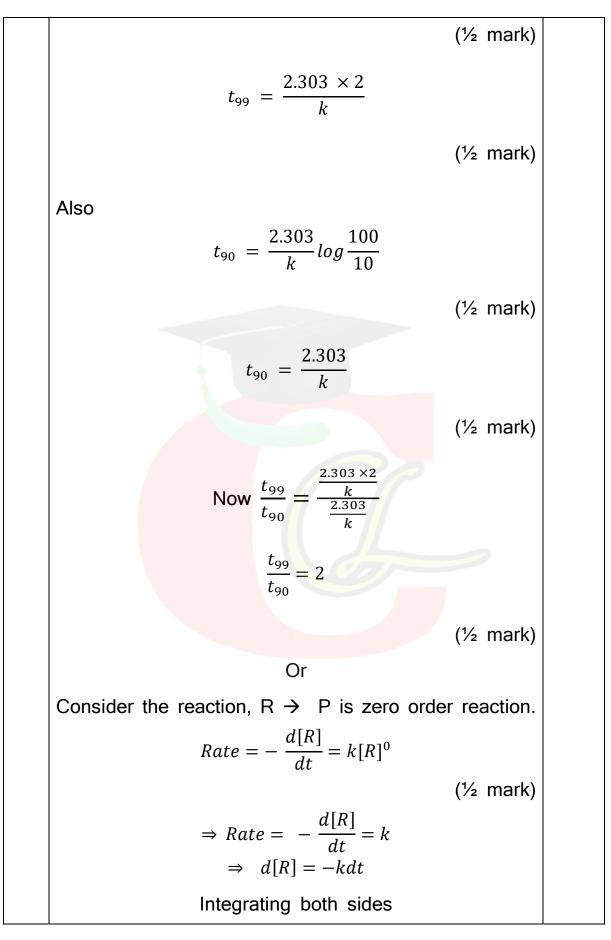
 The answer points given in the marking scheme are not final. These are suggestive and indicative. If the examinee has given different, but appropriate answers, then he should be given appropriate marks.


Q.	Answers	Marks
No.		
1.	c) μg/mL	1
2.	b) 0.9% (mass/volume) NaCl	1
3.	b) Anode	1
4.	c) mol $L^{-1}s^{-1}$	1
5.	c) Zn	1
6.	a) KMnO ₄	1
7.	d) 6	1
8.	b) <i>cis</i> -platin	1
9.	c) 3-Chloropropene	1
10.	c) Phenol	1
11.	c) 4-Nitroanisole	1
12.	b) β-D-Glucose	1
13.	a) 51	1
14.	b) Vitamin C	1
15.	a) Both A and R are true, and R is the correct	1
	explanation of A.	

16.	d) A is false but R is true.	1
17.	b) Both A and R are true, and R is not the correct	1
	explanation of A	
18.	d) A is false but R is true	1
19.	The properties which depend on the number of solute	2
	particles irrespective of their nature relative to the	
	total number of particles present in the solution are	
	called colligative properties.	
	(1 mark)	
	Examples: (1) relative lowering of vapour pressure	
	of the solvent	
	(2) depression of freezing point of the solvent	
	(3) elevation of boiling point of the solvent	
	(4) osmot <mark>ic pressure</mark>	
	(Any two, ½ mark each)	
20.	Given:	2
	c = 0.20 M	
	C = 0.20 W	
	κ = 0.0248 S cm ⁻¹	
	molar conductivity	
	$\Lambda_m = \frac{\kappa \times 1000}{c}$	
	c	
	(½ mark)	
	$\Lambda_m = \frac{0.0248 \times 1000}{0.20}$	

2

	(½ mark)	
	$\Lambda_m = 124 \mathrm{S} cm^2 mol^{-1}$	
	($\frac{1}{2}$ mark for answer, $\frac{1}{2}$ mark for unit)	
	Or	
Given		
Produ	ction of AI from AI_2O_3 has a reaction as	
followi	ing:	
	$AI^{3+} + 3e^- \rightarrow AI$	
	(½ mark)	
i.e. pr	roduction of 1 mole of Al (27 g) from Al_2O_3	
	es electricity = $3 F$	
	roduction of 1 g of AI from AI_2O_3 requires	
	ficity = 3/27 F	
	(½ mark)	
Son		
	production of 40 g of AI from AI_2O_3 requires	
	icity = $40/9$ F	
= 4.44		
	(¹ / ₂ mark for answer, ¹ / ₂ mark for unit)	
21. conce	ntration of reactants & pressure in case of	
gases	, temperature, and catalyst.	2
	(½ mark each)	
22. In the	e first transition series, Cu exhibits +1 oxidation	
state	very frequently.	2
	(1 mark)	

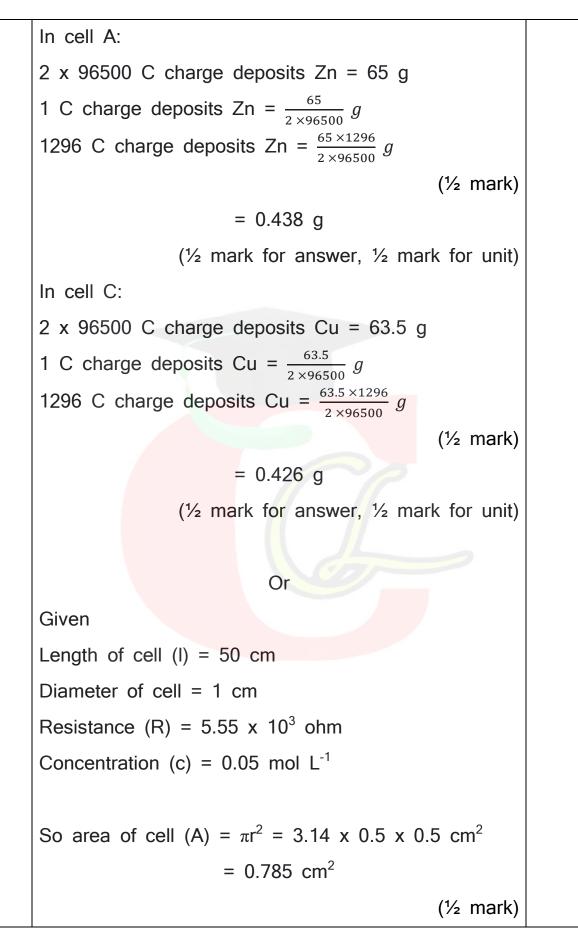

Code: B

		(1 mark)	
26.	Positive Deviation Non-	Negative Deviation Non-	
	Ideal Solutions	ideal solutions	
	1. Those liquid-liquid	1. Those liquid-liquid	
	solutions which has	solutions which has	
	vapour pressure more	vapour pressure less	
	than expectations from	than expectations from	
	Raoults' law.	Raoults' law.	
	2. The molecular	2. The molecular	3
	interactions of solution	interactions of solution	3
	is weaker than that of	is stronger than that of	
	solute and solvent.	solute and solvent.	
	3. $\Delta V_{mix} > 0$	3. $\Delta V_{mix} < 0$	
	4. $\Delta H_{mix} > 0$	4. $\Delta H_{mix} < 0$	
	5. They <mark>form minimu</mark> m	5. They form maximum	
	boiling az <mark>eotrops.</mark>	boiling azeotrops.	
		(Any three, 1 mark each)	
27.	For a first order reaction:		
	$t = \frac{2.30}{k}$	$\frac{0.3}{100} \log \frac{[R]_o}{[R]}$	
		(½ mark)	3
	Using this we get:		
	$t_{99} = \frac{2.3}{k}$	$\frac{100}{k}\log\frac{100}{1}$	

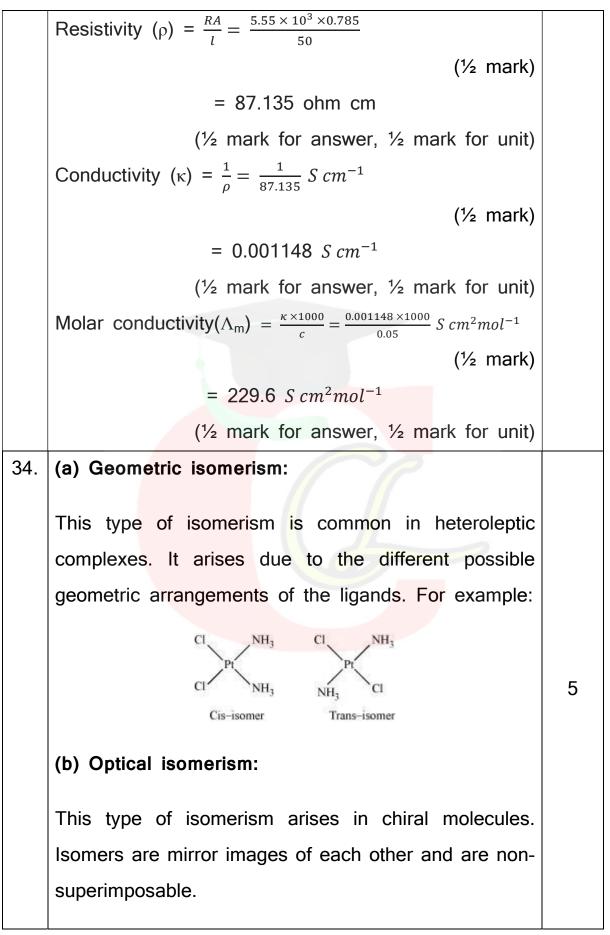
5

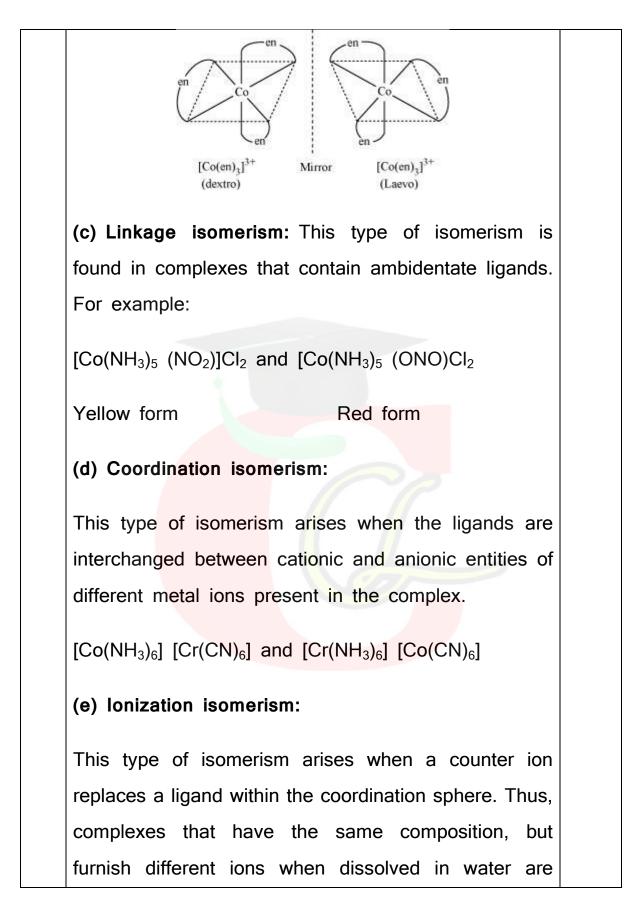
Code: B

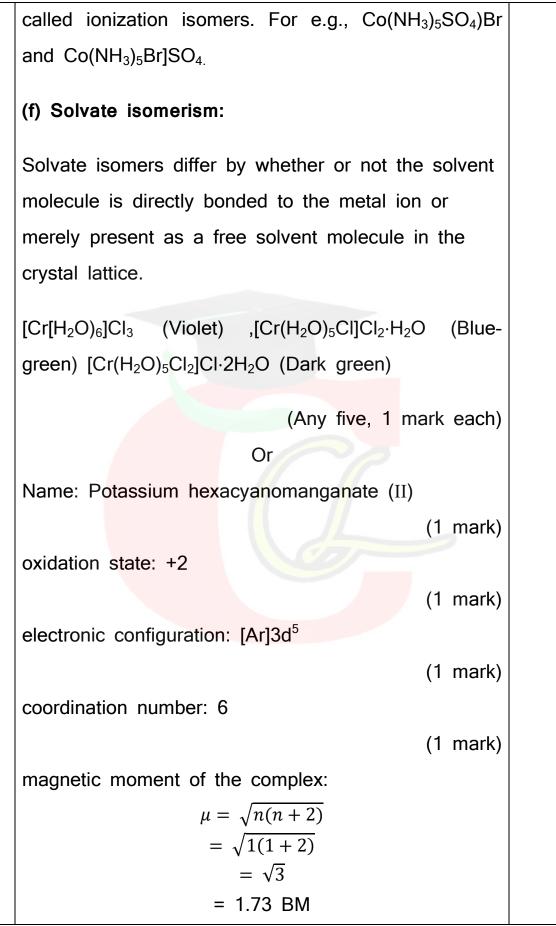
[R] = -kt + I.....Eq. 1 Where I is the constant of integration $(\frac{1}{2} \text{ mark})$ At t = 0, the concentration of the reactant $R = [R]_0$, where [R]₀ is initial concentration of the reactant. $(\frac{1}{2} \text{ mark})$ Substituting in above equation 1 $[R]_0 = -k \times 0 + I$ $[R]_0 = I$ $(\frac{1}{2} \text{ mark})$ Substituting the value of I in the equation 1 $[R] = -kt + [R]_0$ $(\frac{1}{2} \text{ mark})$ $\Rightarrow k = \frac{[R]_0 - [R]}{t}$ This is the integrated rate equation for a zero-order reaction. $(\frac{1}{2} \text{ mark})$ i) ability to adopt multiple oxidation states 28. ii) ability to form complexes. iii) transition metals utilise outer d and s electrons for bonding. This has the effect of increasing the 3 concentration of the reactants at the catalyst surface and also weakening of the bonds in the reacting molecules. (1 mark each)


29.	i) Freon-12 is used for aerosol propellants,	
	refrigeration and air conditioning purposes.	
	ii) Carbon tetrachloride is used in the synthesis	
	of chlorofluorocarbons and other chemicals,	3
	pharmaceutical manufacturing, and general	5
	solvent use.	
	iii) lodoform can be used as antiseptic.	
	(1 mark each)	
30.	i)	
	A: CH ₃ CH ₂ CN	
	B: CH ₃ CH ₂ CH ₂ NH ₂	
	C: CH ₃ CH ₂ CH ₂ OH	
	(½ mark each)	
	ii)	
	A: $C_6H_5NH_2$	
	B: C ₆ H ₅ N ⁺ ₂ Cl ⁻	3
	C: C ₆ H ₅ OH	5
	(½ mark each)	
	Or	
	i) Ethylamine is capable of forming hydrogen bonds	
	with water as it is soluble but in aniline the bulk	
	carbon prevents the formation of effective hydrogen	
	bonding and is not soluble.	
	(1 mark)	

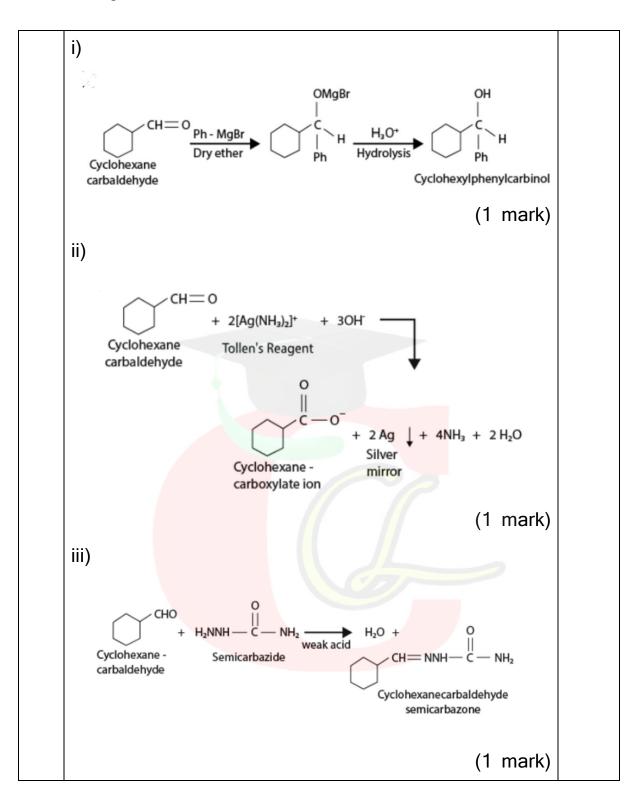
	ii) A Friedel-Crafts reaction is carried out in the	
	presence of $AICI_3$. But $AICI_3$ is acidic in nature, while	
	aniline is a strong base. Thus, aniline reacts with	
	$AICI_3$ to form a salt and benzene ring is deactivated.	
	Hence, aniline does not undergo the Friedel-Crafts	
	reaction.	
	(1 mark)	
	iii) Gabriel phthalimide reaction gives pure primary	
	amines without any contamination of secondary and	
	tertiary amines. Therefore, it is preferred for	
	synthesising primary amines.	
	(1mark)	
31.	i) ether or $C_2H_5OC_2H_5$	
	(1 mark)	
	ii) 2	
	(1 mark)	
	or	
	Ethanoic acid	4
	(1 mark)	
	iii) C ₂ H₅OH	
	(1 mark)	
	iv) CH ₃ CH ₂ I	
	(1 mark)	
32.	i) Deoxyribonucleic acid	
	(1 mark)	

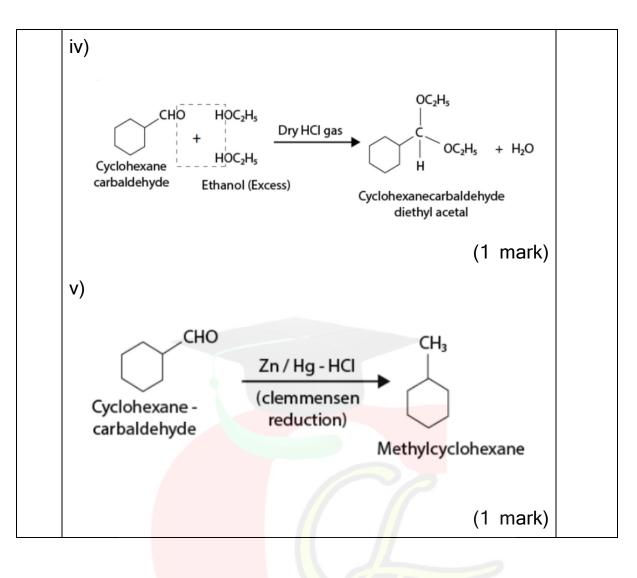

Code: B


ii) Phosphodiester bond (1 mark) iii) ribosomal (1 mark) iv) 3 (1 mark) or 4 (1 mark) The reactions occurring in cells A, B and 33. С respectively are as following: Zn²⁺ + 2e⁻→ Zn $Ag^+ + e^- \rightarrow Ag$ $Cu^{2^+} + 2e^- \rightarrow Cu$ $(\frac{1}{2} \text{ mark})$ In cell B: 108 g of Ag deposition requires charge = 96500 C 5 1 g of Ag deposition requires charge = 96500/108 C 1.45 g of Ag deposition requires charge = $\frac{96500 \times 1.45}{108} C = 1296 C$ $(\frac{1}{2} \text{ mark})$ ∵ Q= It : 1296 = 1.5t \Rightarrow t = 863 s (¹/₂ mark for answer, ¹/₂ mark for unit)


Chemistry

Code: B





14

	(¹ / ₂ mark for answer, ¹ / ₂ mark for unit)	
35.	Organic compound A is an ester as on acid hydrolysis	
	it gives a mixture of an acid and an alcohol.	
	(½ mark)	
	Oxidation of alcohol (C) gives acid (B). Hence, the	
	number of carbon atoms in (B) and (C) are the same.	
	(½ mark)	
	Ester (compound A) has eight C atoms. Hence, both	
	carboxylic acid (B) and alcohol (C) must contain 4 C	
	atoms each.	
	(½ mark)	
	Dehydration of alcohol C gives but-1-ene. Hence, C	5
	must be a straight chain alcohol, i.e butan-1-ol.	0
	(½ mark)	
	Reactions:	
	$CH_3CH_2CH_2COOCH_2CH_2CH_2CH_3 +$	
	$\xrightarrow{dil. H_2SO_4} CH_3CH_2CH_2COOH + CH_3CH_2CH_2OH$	
	(1 mark)	
	$CH_3CH_2CH_2CH_2OH \xrightarrow{Dehydratio} CH_3CH_2CH = CH_2$	
	(1 mark)	
	$CH_3CH_2CH_2CH_2OH \xrightarrow{CrO_3/CH_3COOH} CH_3CH_2CH_2COOH$	
	(1 mark)	
	Or	

Code: B

