BSEH MARKING SCHEME

CLASS- XII Chemistry (March-2024)

Code: A

- The answer points given in the marking scheme are not final. These are suggestive and indicative. If the examinee has given different, but appropriate answers, then he should be given appropriate marks.

Q. No.	Answers	Marks
1.	a) Copper dissolved in Gold.	1
2.	b) Increases with increase in temperature	1
3.	d) $\mathrm{S} \mathrm{m}^{-1}$	1
4.	d) All of these	1
5.	a) 0	1
6.	b) Frequency factor	1
7.	a) Sc	1
8.	a) Vitamin B_{12}	1
9.	c) Nal	1
10.	b) n-Butane	1
11.	b) 3-Phenylprop-2-en-1-al	1
12.	c) Position isomerism	1
13.	b) Ribose	1
14.	d) Vitamin K	1
15.	a) Both A and R are true, and R is the correct	1
	explanation of A.	

16.	a) Both A and R are true, and R is the correct explanation of A.	1
17.	a) Both A and R are true, and R is the correct explanation of A.	1
18.	d) A is false but R is true	1
19.	Ideal Solutions \quad Non-ideal solutions	2
	1. Those liquid-liquid 1. Those liquid-liquid solutions which obey solutions which do not Raoults' law at each obey Raoults' law at concentration. each concentration.	
	2. The molecular 2. The molecular interactions of solution interactions of solution is same as that of is not same as that of solute and solvent. solute and solvent.	
	3. $\Delta V_{\text {mix }}=0$ 3. $\Delta V_{\text {mix }} \neq 0$	
	$4 . \Delta H_{\text {mix }}=0$ 4. $\Delta H_{\text {mix }} \neq 0$	
	(any two differences, 1 mark each) Or Given molarity $(\mathrm{M})=0.15 \mathrm{M}$ Volume (V) $=250 \mathrm{~mL}$ Molar mass of solute $\left(\mathrm{M}_{2}\right)=122 \mathrm{~g} / \mathrm{mol}$ Mass of solute $\left(\mathrm{w}_{2}\right)=$? $\begin{aligned} & \because M=\frac{w_{2} \times 1000}{M_{2} \times V} \\ & \therefore w_{2}=\frac{M \times M_{2} \times V}{1000} \end{aligned}$	

	$\begin{aligned} & \Rightarrow w_{2}=\frac{122 \times 250 \times 0.15}{1000} \mathrm{~g} \\ & \quad(1 / 2 \text { mark }) \\ & \quad \Rightarrow w_{2}=4.575 \mathrm{~g} \\ & (1 / 2 \text { mark for correct answer, } 1 / 2 \text { mark for unit }) \end{aligned}$	
20.	First Law: The amount of chemical reaction which occurs at any electrode during electrolysis by a current is proportional to the quantity of electricity passed through the electrolyte. (1 mark) Second Law: The amounts of different substances liberated by the same quantity of electricity passing through the electrolytic solution are proportional to their chemical equivalent weights.	2
21.	The reaction which is not of first order but behaves like first order is called pseudo first order reaction. (1 mark) Example: acid hydrolysis of ethyl acetate or inversion of cane sugar	2

	(Any one, 1 mark)	
22.	Interstitial compounds are those which are formed when small atoms like H, C or N are trapped inside the crystal lattices of metals. (1 mark) Interstitial compounds are well known for transition compounds due to their closed crystalline structure with voids in them. The atomic size of transition metals is very large hence have large voids to occupy these small atoms.	2
23.	Alkyl halides react with sodium in dry ether to give hydrocarbons containing double the number of carbon atoms present in the halide. This reaction is known as Wurtz reaction. Methyl bromide Ethane (1 mark) Or Groups which possess two different nucleophilic centres and are called ambident nucleophiles. (1 mark) nitrite ion represents an ambident nucleophile with two different points of linkage. The linkage through	2

26.	Here Vapour Pressure of solution at normal boiling point $\left(p_{1}\right)=1.004 \text { bar }$ Vapour Pressure of pure water at normal boiling point $\left(\mathrm{p}_{1}{ }_{1}\right)=1.013 \mathrm{bar}$ ($1 / 2$ mark) Let mass of solution $(\mathrm{W})=100 \mathrm{~g}$ ($1 / 2$ mark) Mass of solute $\left(\mathrm{w}_{2}\right)=2 \mathrm{~g}$ Mass of solvent $\left(\mathrm{w}_{1}\right)=98 \mathrm{~g}$ Molar mass of solvent (water) $\left(\mathrm{M}_{1}\right)=18 \mathrm{~g} / \mathrm{mol}$ According to Raoult's law: $\begin{array}{ll} \frac{p_{1}^{o}-p_{1}}{p_{1}^{o}}=\frac{\frac{w_{2}}{M_{2}}}{\frac{w_{1}}{M_{1}}+\frac{W_{2}}{M_{2}}} & (1 / 2 \text { mark }) \\ \Rightarrow \frac{1.013-1.004}{1.013}=\frac{\frac{2}{M_{2}}}{\frac{98}{18}+\frac{2}{M_{2}}} & \\ \Rightarrow M_{2}=40.98 \mathrm{~g} / \mathrm{mol} & (1 / 2 \mathrm{mark}) \end{array}$ ($1 / 2$ mark for answer, $1 / 2$ mark for unit)	3
27.	$\mathrm{T}_{1}=298 \mathrm{~K}$ After the increase in temperature by 10 K	3

28. When a particular oxidation state becomes less stable relative to other oxidation states, one lower, one higher, it is said to undergo disproportionation.
(1 mark)
For example,
manganese (VI) becomes unstable relative to manganese (VII) and manganese (IV) in acidic solution.
$3 \mathrm{MnO}_{4}{ }^{2-}+4 \mathrm{H}^{+} \rightarrow \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(1 mark)
copper (I) compounds are unstable in aqueous solution and undergo disproportionation.

$$
2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}
$$

(1 mark)
Or

Chromates are obtained by the fusion of chromite ore $\left(\mathrm{FeCr}_{2} \mathrm{O}_{4}\right)$ with sodium or potassium carbonate in free access of air. The reaction with sodium carbonate occurs as follows:
$4 \mathrm{FeCr}_{2} \mathrm{O}_{4}+8 \mathrm{Na}_{2} \mathrm{CO}_{3}+7 \mathrm{O}_{2} \rightarrow 8 \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{Fe}_{2} \mathrm{O}_{3}$ $+8 \mathrm{CO}_{2}$

The yellow solution of sodium chromate is filtered and acidified with sulphuric acid to give a solution

	from which orange sodium dichromate can be crystallised. $2 \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{H}^{+} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}$ (1 mark) Sodium dichromate is more soluble than potassium dichromate. The latter is therefore, prepared by treating the solution of sodium dichromate with potassium chloride and orange crystals of potassium dichromate crystallise out. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{KCl} \rightarrow \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{NaCl}$
29.	Aryl halides are extremely less reactive towards nucleophilic substitution reactions due to the following reasons: (i) Resonance effect: In haloarenes, the electron pairs on halogen atom are in conjugation with p electrons of the ring and the resonating structures are possible. $\mathrm{C}-\mathrm{Cl}$ bond acquires a partial double bond character due to resonance. As a result, the bond cleavage in haloarene is difficult than haloalkane and therefore, they are less

	(1 mark)	
31.	i) Phenol (1mark) ii) 8 (1 mark) Or Salicylic Acid (1 mark) iii) Reimer-Tiemann reaction (1 mark) iv) Aspirin possesses analgesic, anti-inflammatory and antipyretic properties. (any one, 1 mark)	4
32.	i) Amino acids have amino $\left(-\mathrm{NH}_{2}\right)$ group, basic in nature and accepts a proton and COOH group loses a proton forming a dipolar ion, called the Zwitter ion. In this form, amino acids behave both as acids and bases, so they are amphoteric in nature. (1 mark) ii) Peptide bond (1 mark) iii) If more than ten α-amino acids are joined together by peptide bond the structure thus formed is called Polypeptides.	

	iv) Glycine/ Alanine/ Glutamic acid/ Aspartic acid/ Glutamine/ Asparagine/ Serine/ Cysteine/ Tyrosine/ Proline (Any one, 1 mark) Or 20	
33.	Nernst equation: $E_{\text {cell }}=E_{\text {cell }}^{o}-\frac{0.0591}{n} \log \frac{M g^{2+}}{C u^{2+}}$ (1 mark) Calculation of $E_{\text {cell }}$: $\begin{array}{cc} E_{\text {cell }}=2.70-\frac{0.0591}{2} \log \frac{0.001}{0.0001} & \\ E_{\text {cell }}=2.70-\frac{0.0591}{2} \log 10 & \\ E_{\text {cell }}=2.67 \mathrm{~V} & (1 / 2 \mathrm{mark}) \end{array}$ ($1 / 2$ mark for answer, $1 / 2$ mark for unit) Calculation of $\Delta_{\mathrm{r}} \mathrm{G}^{0}$: $\Delta_{r} G^{\circ}=-n F E_{\text {cell }}^{\circ}$ ($1 / 2$ mark) $\begin{gathered} \Delta_{r} G^{\circ}=-2 \times 96500 \times 2.70 \\ \Delta_{r} G^{\circ}=-521100 \mathrm{Jmol}^{-1}=-521.1 \mathrm{kJmol}^{-1} \end{gathered}$ ($1 / 2$ mark) ($1 / 2$ mark for answer, $1 / 2$ mark for unit)	5

	Given $\begin{aligned} & \kappa=7.896 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1} \\ & \mathrm{c}=0.00241 \mathrm{M} \\ & \Lambda_{m}^{0}=390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \end{aligned}$ Molar conductivity $\Lambda_{m}=\frac{\kappa \times 1000}{c}$ ($1 / 2$ mark) $\Lambda_{m}=\frac{7.896 \times 10^{-5} \times 1000}{0.00241}$ ($1 / 2$ mark) $\Lambda_{m}=32.76 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ ($1 / 2$ mark for answer, $1 / 2$ mark for unit) Degree of dissociation; $\alpha=\frac{\Lambda_{m}}{\Lambda_{m}}$ ($1 / 2$ mark) $\alpha=\frac{32.76}{390.5}=0.084$ ($1 / 2$ mark) Dissociation constant; $K_{a}=\frac{c \alpha^{2}}{1-\alpha}$ ($1 / 2$ mark) $\begin{gathered} K_{a}=\frac{0.00241 \times(0.084)^{2}}{1-0.084} \\ K_{a}=1.86 \times 10^{-5} \end{gathered}$ ($1 / 2$ mark) (1 mark)	
34.	i) 3 (1 mark) ii) 3 (1 mark)	5
	Downloaded from cclchapter.com	Code: A

	Since all electrons are paired, it is diamagnetic. ($1 / 2$ mark) In case of $\left[\mathrm{NiCl}_{4}\right]^{2-}, \mathrm{Cl}^{-}$ion is a weak field ligand. Therefore, it does not lead to the pairing of unpaired $3 d$ electrons. ($1 / 2$ mark) Therefore, it undergoes $s p^{3}$ hybridization. Since there are 2 unpaired electrons in this case, it is paramagnetic in nature.	
35.	Case I Propanal + Propanal + dil. $\mathrm{NaOH} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}$ (2-Methylpent-2-en-1-al) (1/2 mark $+1 / 2$ mark) Case II Butanal + Butanal + dil. $\mathrm{NaOH} \rightarrow$ $\begin{array}{r} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CHO}(2 \text {-Ethylhex-2-en-1-al) } \\ (1 / 2 \text { mark }+1 / 2 \text { mark }) \end{array}$ Case III Butanal + Propanal + dil. $\mathrm{NaOH} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}$ (2-Methylhex-2-en-1-al)	5

