

	Key for set D BIOLOGY 12	
Sr.No	Value Point	Marks
1.	A) Parthenium	1
2.	D) Scutellum	1
3.	B) Leydig cells	1
4.	A) ZIFT and IUT	1
5.	B) 50%	1
6.	A) 50%	1
7.	A) Leading strand	1
8.	A) Bacterium	1
9.	A) Sedimentary Rocks	1
10.	D) Convergent Evolution	1
11.	C) Warm and moist environment	1
12.	D) Natality	1
13.	B) Resource partitioning	1
14.	C) Eichhorniacrassipes	1
15.	В)	1
16.	В	1
17.	C)	1
18.	A)	1
	Section-B	
19.	Virus infected cells secrete proteins called interferons.	1
	Interferons protect non-infeeted cells from further viral infection.	1
20.	(a) Lactobacillus	1
	(b) Acetobacteracete	1
21.	The living organisms products w <mark>hich check the gr</mark> owth of other living o <mark>rganisms</mark> .	1
	Penicilliumnotatum	1
22.	Genetic engineering approval committee	1
	Objectives: Make decisions r <mark>egarding the validit</mark> y of GM research and safety of	1
	introducing GM organisms f <mark>or public services.</mark>	
23.	Every organism has only two forms of a gene i.e only two allelic forms are presents in	1
	human being because chromosomes exists as homologous pairs there forethe genes	
	will also be in pairs, but it is not essential that a gene exists only in two forms in a	
	population, so the different forms of a gene can exist in population only.	
	For e.g The genes for blood group are A,B and O.	1
	OR	
	A cross which is used to access the genotype of an individual in it the individual to be	1
	tested is crossed with homozygous recessive parent if the progeny are showing only	
	dominant feature then the parent (which was tested) is homozygous, if the progeny	1
24	are showing both dominant and recessive feature it means the parent is homozygous.	1
24.	Euchromatin: It is lightly stained and transcriptionally active.	1
25	Heterochromatin: It is darkly stained and transcriptionally in active.	1
25.	 Synthesis of antibiotic resistant pathogens due to continuous use of antibiotics. 	1
	 Excess use of Herbicides pesticides has resulted in selection of resistant 	1
	varities in which lesser time.	
	vanites in which reset time.	1

	Section-C	
26.	Auto gamy : Transfer of pollen grains from anther to stigma of the same flower.	1
	Geitonogamy : Transfer of pollen grain from anther to stigma of the other flower on the same plant	1
	Xenogamy : Transfer of pollen grain from anther to stigma of the other flower on the different plant.	1
	OR	
	1) Pollen release and stigma receptivity are not synchronized	1
	2) Anther and stigma are placed at different positions	1
	3) Self incompatibility	1
	4) Unisexual flowers	1
27.	Sex determination in Drosophila Males are hetero gametic.	1
	The sex of the offspring is decided by the type of contributed chromosome i.e if X type	1
	of sperms fertilizes egg then the offspring will be male, if Y type of sperm is fertilizing the egg then offspring will be male.	1
	OR	
	The characters/sex linked disease whose responsible genes are present an sex	1
	chromosome are called sex linked diseases. The genotype of Turner's syndrome is XO It can be caused by normal egg i.e without sex chromosome(due to non disjunction of	1
	sex chromosome). <u>Symptoms</u> : Sterile females ovaries rudlimentary	1
	Lack of secondary sexual characters.	
28.	 Selectable marker sites : Sites in the cloning vector which are used to distinguish between Transformants and non-transformants. 	1
	2. Cloning sites : Sites a <mark>t which the desired</mark> DNA can be inserted so that multiple	1
	copies can be obtained along with replication of the core DNA. 3. Orisite : The site in the vector from where the origin of replication takes place ,	1
	it is essential as the purpose of vector is to generate multiple copies of the desired DNA.	
29.	Grazing food chain starts with plants	
	The primary consumer are he <mark>rbivore</mark>	1.5
	Detritus food chain starts with dead organic matter	
	The primary consumer are decompsers	1.5
30.	Ex situ means of conservation can be done by zoo, botanical gardens wildlife safari	1
	parks	1
	cryopreservation techniques, seed banks .	1
31.	1. The blue coloured contain in the figure is amniotic fluid	1
31.	 The blue coloured containing the light is anniholic fluid The developing foetus is enclosed in uterus 	1
	 The developing foetus is enclosed in defus The shown is banned because it is misused for detecting the sex of foetus 	2
	OR	2
	The prime aim of this technique is to find out chromosomal abnormality	
32.	1. The cause of his suffering is his chain smoking nature	1
	2. Siddharth became chain smoker due to peer pressure	1
	 The symptoms of his sufferings are pain in chest , shortness of breath wheezing and chronic cough 	2
32.	 The cause of his suffering is his chain smoking nature Siddharth became chain smoker due to peer pressure 	1

	Nock - Having contrible	
	Neck : Having centriole . Middle : Having mitochondria	
	Piece	
34.	Replication of DNA	
J 4 .	Requirements :	1
	 DNA polymerase 	-
	 Deoxy ribose nucleo tide triphosphates which acts as the energy 	1
	source and raw material for DNA replication.	1
	 Formation of replication fork . 	1
	 Continuous and discontinuous synthesis. 	1
	 Role of DNA ligase is to attachtheokazakifragments . 	1
	OR	-
		1
		1
	DNA	
) Transcription Diagram	
	(5)	
		2
	5' DIA 6.45	2
	Promoter Sigma factor	
	RNA polymerase Signa factor Initiation	1
	3'	
	RNA () Terminator	
	Elongation	
	3' 5'	1
		1
	RNA	
	Termination RNA Polymerase	
	Rho factor	
25	Postvistion on Turno	1
35.	Restriction enzyme	1
	Cloning vector	1
	Competent host DNA is hyotoophillic it cannot pass through cell membranges so , in	1
	order to take bacteria to take up the plasmid , the cell is made competeit by :	1
	Treating specific concentraltion of a divalant cation like a which in creases the	
	efficiency with which DNA enters.	
	 Recombinant DNA can be forced by in cubating cellsonice follwed by placing 	1
	them at 17 ^v e (heat sheek) it enables to take up recombinant DNA	1
	 them at 42⁰c (heat shock), it enables to take up recombinant DNA. ◆ DNA can be inserted by micro injection or genegun. 	

