Instructions:

- 1. All the questions are compulsory.
- 2. The question paper consists of 16 questions divided into 4 sections A,B,C and D.
- 3. Section A comprises of 3 questions :
 - (i) Q.No.1 consists of 16 Multiple Choice Questions carrying 1 mark each.
 - (ii) Q.No.2 consists of 8 Fill in the Blank type questions carrying 1 mark each.
 - (iii) Q.No.3 consists of 8 True/False type questions carrying 1 mark each.
- 4. Section B comprises of 5 questions of 2 marks each.
- 5. Section C comprises of 5 questions of 4 marks each.
- 6. Section D comprises of 3 questions of 6 marks each.
- 7. Internal choice has been provided in three questions of 2 marks, three questions of 4 marks and three questions of 6 marks. You have to attempt only one of the alternatives in all such questions.
- 8. Use of calculator is not permitted.

Section – A

Q1 Choose the correct options in the following questions :

(i)	Function $f: R \to R$, f	f(x) = 3x - 5 is:			1
	(a)one-one only	(b)onto only	(c)one-one and onto	(d)none of these	
(ii)	Relation given by <i>R</i> = (a)reflexive only	{(1, 1), (2, 2), (1, 2), (2, 7) (b)symmetric only	1)} is (c)transitive only	(d) equivalence relation	1
(iii)	$\cos^{-1}\left(\cos\frac{5\pi}{2}\right)$ is equal to :				
	$(a)\frac{\pi}{5}$	(b) $\frac{2\pi}{3}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{3}$	1
(iv)	If $\begin{bmatrix} 1 & -x \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 8\\ -3 \end{bmatrix}$ then value of x is:			1
	(a)8	(b)-4	(c)3	(d)-8	1
(v)	If order of matrix A is 2 \times 3 and order of matrix B is 3×5 then order of matrix BA is :				1
	(a)5 × 2	(b) 2×5	(c) 5 × 3	(d) 3 × 2	
(vi)	If $f(x) = \begin{cases} kx + 1, x \le 5\\ 3x - 5, x > 5 \end{cases}$ is continuous then value of k is :				
	(a) ⁹ / ₅	(b) $\frac{5}{9}$	(c) $\frac{5}{3}$	(d) $\frac{3}{5}$	1
(vii)	$\frac{d}{dx}$ {tan ⁻¹ (e^x)}is equal to :				
	(a) $e^x \tan^{-1} e^x$	(b) $\frac{e^x}{1+e^{2x}}$	(c) 0	(d) $e^x \sec^{-1} x$	1
(viii)	Critical point of the function $f(x) = x^2 - 10x + 2$ is :				
	(a) $x = 4$	(b) $x = 6$	(c) $x = 5$	(d)x = 2	1
(ix)	$\int 3x^2 dx$ is equal to :				1
	(a) $x + c$	(b) $x^2 + c$	(c) $x^{3} + c$	(d) $x^{4} + c$	
(x)	$\int_0^{\pi/2} \frac{\sin^{1/2} x}{\sin^{1/2} x + \cos^{1/2} x} dx$ is equal to :				
	(a)0	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{4}$	-
(xi)	Degree of differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 3y = 0$ is:				
	(a)3	(b) 2	(c)1	(d)0	-
(xii)	If $\vec{a}.\vec{b}= \vec{a} imes \vec{b} $ then angle between vector \vec{a} and vector \vec{b} is :				
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$	1
(xiii)	If $\vec{a} \cdot \vec{b} = 0$ then angle	e between vectors \vec{a} and	\vec{b} is:	-	1
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$	
(xiv)	Direction ratios of line given by $\frac{x-1}{3} = \frac{2y+6}{12} = \frac{1-z}{-7}$ are :				
	(a) < 3,12,−7 >	(b) < 3, −6, 7 >	(c) < 3,6,7 >	(d)< 3,6,−7 >	
(xv)	Common area for eac (a)infeasible region	(b)feasible region	rom cclchapte	d)main region	1

quadrant. **Q8** 2

Find the value of *m* if the vectors $\vec{a} = 2\hat{i} - \hat{j} - m\hat{k}$ and $\vec{b} = 5\hat{i} + 2\hat{j} - \hat{k}$ are perpendicular to each other. OR Find the angle between the lines : $\frac{x-2}{1} = \frac{y-3}{2} = \frac{z-7}{-5}$ and $\frac{x+5}{3} = \frac{y-2}{2} = \frac{z-6}{4}$ 2

Section – C

Q9	Show that function : $\mathbb{R} o \mathbb{R}$, $f(x) = rac{4-3x}{2}$ is one-one and onto.			
Q10	If $y = x^{\sin x} + (\sin x)^x$ then find $\frac{dy}{dx}$.			
	OR			
	Find the general solution of the differential equation $(\tan^{-1} v - x)dv = (1 + v^2)dx$.	4		

Find the general solution of the differential equation $(\tan^{-1} y - x)dy = (1 + y^2)dx$.

Downloaded from cclchapter.com

Q11 Evaluate $\int_0^{\pi/2} \log \sin x \, dx$.

Evaluate $\int [\log(\log x) + \frac{1}{(\log x)^2}] dx$

Q12 Solve the following linear programming problem graphically: Maximize and minimize Z = 4x + 3y subject to the constraints

$$x + y \le 8$$
, $4x + y \ge 8$, $x - y \ge 0$, $x \ge 0$, $y \ge 0$

Q13Probability of solving a specific problem independently by A and B are 1/2 and 1/3 respectively. If both
try to solve the problem independently, find the probability that :
(i)the problem is solved(ii)exactly one of them solves the problem

OR

Section – D

In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If coin falls heads, he answers true and if it falls tails, he answers 4 false. Find the probability that he answers at least 12 questions correctly.

Q14 (a) Express the matrix
$$A = \begin{bmatrix} 2 & 2 & 5 \\ 3 & 9 & 5 \\ 8 & 7 & 1 \end{bmatrix}$$
 as a sum of a symmetric matrix and a skew-symmetric matrix. 4
(b) If $A = \begin{bmatrix} 5 & -2 \\ 4 & 8 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 0 \\ 3 & 2 \end{bmatrix}$ then show that $(AB)' = B'A'$
OR
Solve the following system of linear equations by matrix method :
 $2x - 4y + 5z = 3$ $3x + y - 4z = 0$ $x + y - z = 1$
Q15 Show that height of the cylinder of maximum volume that can be inscribed in a sphere of 30 cm is $\frac{60}{\sqrt{3}}$ cm. 6
OR
Solve $\int \frac{1}{x^4 + 1} dx$
Q16(a) Find the projection of the vector $\vec{a} = 3\hat{i} - 2\hat{j} + 7\hat{j}$ on the vector $\vec{b} = 6\hat{i} + \hat{j} - 2\hat{k}$
(b) Find any daigonal of the parallelogram whose adjacent sides are given by the vectors $\vec{a} = 5\hat{i} + 2\hat{j} + \hat{k}$
and $\vec{b} = \hat{i} + 9\hat{j} + 2\hat{k}$ Also find the area of the parallelogram.

A line makes angles α, β, γ and δ with the diagonals of a cube, prove that

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma + \cos^2\delta = \frac{4}{3}$$

OR

Downloaded from cclchapter.com

OR

4

4

4

4

6

6