Time Allowed : 3 Hours

MATHEMATICS

Instructions:

- 1. All the questions are compulsory.
- 2. The question paper consists of 16 questions divided into 4 sections A,B,C and D.
- 3. Section A comprises of 3 questions :
 - (i) Q.No.1 consists of 16 Multiple Choice Questions carrying 1 mark each.
 - (ii) Q.No.2 consists of 8 Fill in the Blank type questions with options carrying 1 mark each.
 - (iii) Q.No.3 consists of 8 True/False type questions carrying 1 mark each.
- 4. Section B comprises of 5 questions of 2 marks each.
- 5. Section C comprises of 5 questions of 4 marks each.
- 6. Section D comprises of 3 questions of 6 marks each.
- 7. There is no overall choice. However, an internal choice has been provided in three questions of 2 marks, three questions of 4 marks and three questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
- 8. Use of calculator is not permitted.

Section – A

Q1 Choose the correct options in the following questions :

(i)	Function $f: R \rightarrow R$, (a)one-one only	f(x) = 3x - 5 is : (b)onto only	(c)one-one and onto	(d)none of these	1		
(ii)		= {(1, 1), (2, 2), (1, 2), (2 (b)symmetric only	, 1)} is (c)transitive only	(d) equivalence relation	1		
(iii)	$\cos^{-1}\left(-\cos\frac{2\pi}{3}\right)$ is equal to :						
	(a) $\frac{\pi}{5}$	(b) $\frac{2\pi}{3}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{3}$	1		
(IV)	If $\begin{bmatrix} 1 & -x \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 8\\-3 \end{bmatrix}$ then value of x is			1		
	(a)8	(b)-4	(c)3	(d)-8	1		
(v)	If order of matrix A is 2×3 and order of matrix B is 3×5 then order of matrix $B'A'$ is :						
	(a)5 × 2	(b) 2 × 5	(c) 5 × 3	(d) 3 × 2	1		
(vi)	If $f(x) = \begin{cases} kx + 1, \\ 3x - 5 \end{cases}$	$x \le 5$ x > 5 is continuous then	value of <i>k</i> is :				
	$(a)\frac{9}{5}$	(b) $\frac{5}{6}$	(c) $\frac{5}{2}$	(d) $\frac{3}{5}$	1		
(vii)	_ J	ual to :			1		
	(a) $e^{x} \tan^{-1} e^{x}$	1+e4	(c) 0	(d) $e^x \sec^{-1} x$	-		
(viii)		The curve $y = x^2 - 2x + 1$		(4)2	1		
	(a)4	(b)6	(c)0	(d)2			
	$\int 3x^2 dx$ is equal to a (a) $x + c$	(b) $x^2 + c$	(c) $x^3 + c$	(d) $x^4 + c$	1		
(x)	$\int_0^{\pi/2} \frac{\sin^{1/2} x}{\sin^{1/2} x + \cos^{1/2} x} dx$ is equal to :						
	(a)0	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{4}$	1		
(xi)	Degree of differential equation $\frac{d^2y}{d^2y} = 2\frac{dy}{d^2y} + 3y = 0$ is						
	(a)3	(b) 2	(c)1	(d) 0	1		
(xii)	If $\vec{a} \cdot \vec{b} = \vec{a} \times \vec{b} $ then angle between vector \vec{a} and vector \vec{b} is :						
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$	1		
(xiii)	If $\vec{a} \cdot \vec{b} = 0$ then angle	between vectors \vec{a} and	\vec{b} is:	3	1		
		between vectors \vec{a} and (b) $\frac{\pi}{6}$		(d) $\frac{\pi}{3}$	-		
(xiv)		e given by $\frac{x-1}{3} = \frac{2y+6}{12} =$			1		
	(a) $< 3,12,-7 >$ Dowhloaded from confloaded						

(xv)	Maximum value of $Z = 3x + y$ for the constraints $x + y \le 4$, $x \ge 0$, $y \ge 0$ is:	1						
	(a)12 (b)16 (c)4 (d)10							
(xvi)	If $P(A) = \frac{1}{2}$, $P(B) = \frac{3}{8}$ and $P(A \cap B) = \frac{1}{5}$ then $P(A B)$ is equal to :	1						
	(a) $\frac{2}{5}$ (b) $\frac{8}{15}$ (c) $\frac{2}{3}$ (d) $\frac{5}{8}$	-						
Q2 Fill in the blanks from the given options								
	0 , 1 , $< 3, -1, 2 >$, $\frac{\pi}{2}$, 6 , 2 , 5 , 4 , $-\sin x$, $\tan x$							
(i)	Value of sin ⁻¹ (1) is	1						
(ii)	If $A = [a_{ij}]_{2 imes 3}$ such that $a_{ij} = i + j$ then $a_{11} =$							
(iii)	If $\begin{vmatrix} x & 0 \\ 7 & 1 \end{vmatrix} = \begin{vmatrix} 3 & 0 \\ 7 & 2 \end{vmatrix}$ then $x = _$							
	If $y = \cos x$ then at $x = 0$, $\frac{dy}{dx} = $							
	$\int_0^5 dx = \underline{\qquad}$							
	Order of the differential equation $\frac{d^2y}{dy^3} + y = 0$ is							
(vii)	Direction ratios of a line which is perpendicular to the plane $3x - y + 2z = 9$ are	1 1						
(viii)	Probability of occurrence of impossible event =	1						
Q3 S (i)	State true or false for the following statements : If A is a square matrix then $(A + A')$ is a skew-symmetric matrix.							
(ii)	If $y = 10x$ then $\frac{dy}{dx} = 0$.	1						
• •	If $y = \tan x$ then $\frac{dy}{dx} = \sec^2 x$	1						
	$\int dx = x^2 + c$	1 1						
(v)								
(vi)								
(vii) (viii)	Point $(3, -4, 2)$ lies in the plane $2x + y - z = 0$ If $P(E) = 0.4$ then $P(not E) = 0.6$	1 1						
(•,		-						
	Section – B							
04	$[1, 1, [2, 3]]$ and $f(x) = x^2 + 2x + 2$ then find $f(A)$							
Q4	If $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$ and $f(x) = x^2 + 2x + 3$ then find $f(A)$. Find the interval in which function $f(x) = x^2 + 2x - 7$ is increasing.	2						
Q5	Find the interval in which function $f(x) = x^2 + 2x - 7$ is increasing. OR	2						
	Find the slope of the normal to the curve $y=x^3-x+1$ at the point whose x –coordinate is 2 .	2						
Q6	Evaluate $\int e^x \left(\log x + \frac{1}{x}\right) dx$.	2						
	OR							
Q7	Evaluate $\int x \sin x dx$ Using integration find the area bounded by the parabola $y^2 = 4x$ straight lines $x = 1$, $x = 4$ in the first	2						
ų/	Using integration find the area bounded by the parabola $y^2 = 4x$ straight lines $x = 1$, $x = 4$ in the first quadrant.							
Q8	Find the unit vector in the direction of diagonal of the parallelogram whose sides are given by the vectors							
	$ec{a}=2\hat{\imath}-\hat{\jmath}-3\widehat{k}$, $ec{b}=5\hat{\imath}+2\hat{\jmath}-\widehat{k}$ OR	2						
	If $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} - 5\hat{k}$, $\vec{b} = 7\hat{\imath} - 2\hat{\jmath} - 4\hat{k}$ then find $\vec{a} \times \vec{b}$.	2						
	Section – C							

Q9 Find the value of: $2 \tan^{-1}(1) - \cos^{-1}\left(\frac{-1}{2}\right) + 3 \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) + 2 \sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$

Downloaded from cclchapter.com

4

Q10	If $y = x^{\sin x} + (\sin x)^x$ then find $\frac{dy}{dx}$.	4
	OR	
	If $y = (\tan^{-1} x)^2$, show that $(x^2 + 1)^2 y_2 + 2x(x^2 + 1)y_1 = 2$	4
Q11	Evaluate $\int \frac{dx}{(x-1)(x-2)(x-3)}$.	4
	OR	

Evaluate
$$\int \frac{\sec^2 x}{\tan^2 x - 4\tan x + 7} dx$$

Q12 Find the general solution of the differential equation
$$x^2 dy - (x^2 + xy + y^2) dx = 0$$
. 4

OR

4

4

6

6

6

6

Find the general solution of the differential equation $\sec^2 x \tan y \, dx - \sec^2 y \tan x \, dy = 0$. Bag I contains 3 red and 4 white balls. Bag II contains 7 red and 5 white balls. A bag is selected at random and

Q13 a ball is drawn from it, which is found to be red. Find the probability that ball is drawn from bag II.

Section – D

$$2x + 3y - 5z = 13$$
 , $x - y + z = -2$, $3x + 2y - z = 8$

Express $A = \begin{bmatrix} 2 & 3 & 5 \\ 0 & 2 & 9 \\ 3 & 2 & 8 \end{bmatrix}$ as the sum of a symmetric matrix and a skew-symmetric matrix. Q15 Find the shortest distance between the lines

OR

$$\vec{r} = 6i - j + 3k + \lambda(i + 3j + 2k) \text{ and } \vec{r} = 9i + j - 4k + \mu(i - 2j + k)$$

Find the foot of perpendicular drawn from the point (2, -3, 5) on the plane 3x + 4y - 2z = 20Q16 Solve the following linear programming problem graphically: Maximize and minimize Z = 4x + 3y subject to the constraints

 $x + y \le 8$, $4x + y \ge 8$, $x - y \ge 0$, $x \ge 0$, $y \ge 0$

OR

Solve the following linear programming problem graphically: Maximize and minimize Z = 5x + 2y - 2 subject to the constraints

$$x + y \le 10$$
, $x + y \ge 3$, $x \le 8$, $y \le 8$, $x \ge 0$, $y \ge 0$

Downloaded from cclchapter.com