Instructions:

1. All the questions are compulsory.
2. The question paper consists of 16 questions divided into 4 sections A, B, C and D.
3. Section A comprises of 3 questions:
(i) Q.No. 1 consists of 16 Multiple Choice Questions carrying 1 mark each.
(ii) Q.No. 2 consists of 8 Fill in the Blank type questions with options carrying 1 mark each.
(iii) Q.No. 3 consists of 8 True/False type questions carrying 1 mark each.
4. Section B comprises of 5 questions of 2 marks each.
5. Section C comprises of 5 questions of 4 marks each.
6. Section D comprises of 3 questions of 6 marks each.
7. There is no overall choice. However, an internal choice has been provided in three questions of $\mathbf{2}$ marks, three questions of 4 marks and three questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
8. Use of calculator is not permitted.
Section - A

Q1 Choose the correct options in the following questions:
(i) Function $f: R \rightarrow R, f(x)=3 x-5$ is:
(a)one-one only
(b)onto only
(c)one-one and onto
(d)none of these
(ii) Relation given by $R=\{(1,1),(2,2),(1,2),(2,1)\}$ is
(a)reflexive only
(b)symmetric only
(c)transitive only
(d) equivalence relation
(iii) $\cos ^{-1}\left(-\cos \frac{2 \pi}{3}\right)$ is equal to :
(a) $\frac{\pi}{5}$
(b) $\frac{2 \pi}{3}$
(c) $\frac{\pi}{2}$
(d) $\frac{\pi}{3}$
(iv) If $\left[\begin{array}{ll}1 & -x \\ 4 & -3\end{array}\right]=\left[\begin{array}{rr}1 & 8 \\ 4 & -3\end{array}\right]$ then value of x is:
(a) 8
(b) -4
(c) 3
(d) -8
(v) If order of matrix A is 2×3 and order of matrix B is 3×5 then order of matrix $B^{\prime} A^{\prime}$ is:
(a) 5×2
(b) 2×5
(c) 5×3
(d) 3×2
(vi) If $f(x)=\left\{\begin{array}{ll}k x+1, & x \leq 5 \\ 3 x-5, & x>5\end{array}\right.$ is continuous then value of k is:
(a) $\frac{9}{5}$
(b) $\frac{5}{9}$
(c) $\frac{5}{3}$
(d) $\frac{3}{5}$
(vii) $\frac{d}{d x}\left\{\tan ^{-1}\left(e^{x}\right)\right\}$ is equal to:
(a) $e^{x} \tan ^{-1} e^{x}$
(b) $\frac{e^{x}}{1+e^{2 x}}$
(c) 0
(d) $e^{x} \sec ^{-1} x$
(viii) Slope of tangent to the curve $y=x^{2}-2 x+1$ at $x=3$ is:
(a) 4
(b) 6
(c)0

> (d)2
(ix) $\int 3 x^{2} d x$ is equal to:
(a) $x+c$
(b) $x^{2}+c$
(c) $x^{3}+c$
(d) $x^{4}+c$
(x) $\int_{0}^{\pi / 2} \frac{\sin ^{1 / 2} x}{\sin ^{1 / 2} x+\cos ^{1 / 2} x} d x$ is equal to :
(a) 0
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{4}$
(xi) Degree of differential equation $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+3 y=0$ is :

1

1
(d) 0
(xii) If $\vec{a} . \vec{b}=|\vec{a} \times \vec{b}|$ then angle between vector \vec{a} and vector \vec{b} is:
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{3}$
(xiii) If $\vec{a} \cdot \vec{b}=0$ then angle between vectors \vec{a} and \vec{b} is:
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{3}$
(xiv) Direction ratios of line given by $\frac{x-1}{3}=\frac{2 y+6}{12}=\frac{1-z}{-7}$ are :
(xv) Maximum value of $Z=3 x+y$ for the constraints $x+y \leq 4, x \geq 0, y \geq 0$ is:
(a) 12
(b)16
(c) 4
(d) 10
(xvi) If $P(A)=\frac{1}{2}, P(B)=\frac{3}{8}$ and $P(A \cap B)=\frac{1}{5}$ then $P(A \mid B)$ is equal to :
(a) $\frac{2}{5}$
(b) $\frac{8}{15}$
(c) $\frac{2}{3}$
(d) $\frac{5}{8}$

Q2 Fill in the blanks from the given options

$$
\mathbf{0}, \quad 1, \quad<3,-1,2>, \quad \frac{\pi}{2}, \quad 6, \quad 2, \quad 5, \quad 4, \quad-\sin x, \quad \tan x
$$

(i) Value of $\sin ^{-1}(1)$ is \qquad
(ii) If $A=\left[a_{i j}\right]_{2 \times 3}$ such that $a_{i j}=i+j$ then $a_{11}=$ \qquad
(iii) \quad If $\left|\begin{array}{ll}x & 0 \\ 7 & 1\end{array}\right|=\left|\begin{array}{ll}3 & 0 \\ 7 & 2\end{array}\right|$ then $x=$ \qquad
(iv) If $y=\cos x$ then at $x=0, \frac{d y}{d x}=$ \qquad
(v) $\int_{0}^{5} d x=$ \qquad
(vi) Order of the differential equation $\frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{3}+y=0$ is \qquad
(vii) Direction ratios of a line which is perpendicular to the plane $3 x-y+2 z=9$ are \qquad
(viii) Probability of occurrence of impossible event $=$ \qquad 1

Q3 State true or false for the following statements :
(i) If \boldsymbol{A} is a square matrix then $\left(A+A^{\prime}\right)$ is a skew-symmetric matrix.
(ii) If $y=10 x$ then $\frac{d y}{d x}=0$.
(iii) If $y=\tan x$ then $\frac{d y}{d x}=\sec ^{2} x$
(iv) $\int d x=x^{2}+c$
(v) $x d y-y d x=0$ is a variable separable type of differential equation.
(vi) Scalar product of two perpendicular vectors is zero.
(vii) Point $(3,-4,2)$ lies in the plane $2 x+y-z=0$
(vii) If $P(E)=0.4$ then $P($ not $E)=0.6$

Section - B

Q4 If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right]$ and $f(x)=x^{2}+2 x+3$ then find $f(A)$.
Q5 Find the interval in which function $f(x)=x^{2}+2 x-7$ is increasing.
OR
Find the slope of the normal to the curve $y=x^{3}-x+1$ at the point whose x-coordinate is 2 .
Q6 Evaluate $\int e^{x}\left(\log x+\frac{1}{x}\right) d x$.

OR

Evaluate $\int x \sin x d x$
Q7 Using integration find the area bounded by the parabola $y^{2}=4 x$ straight lines $x=1, x=4$ in the first quadrant.
Q8 Find the unit vector in the direction of diagonal of the parallelogram whose sides are given by the vectors $\vec{a}=2 \hat{\imath}-\hat{\jmath}-3 \widehat{\boldsymbol{k}}, \vec{b}=5 \hat{\imath}+2 \hat{\jmath}-\widehat{\boldsymbol{k}}$

If $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}-5 \widehat{k}, \vec{b}=7 \hat{\imath}-2 \hat{\jmath}-4 \hat{k}$ then find $\vec{a} \times \vec{b}$.

Section - C

Find the value of: $2 \tan ^{-1}(1)-\cos ^{-1}\left(\frac{-1}{2}\right)+3 \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)+2 \sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$

Q10 If $y=x^{\sin x}+(\sin x)^{x}$ then find $\frac{d y}{d x}$.
If $y=\left(\tan ^{-1} x\right)^{2}$, show that $\left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}=2$
Q11 Evaluate $\int \frac{d x}{(x-1)(x-2)(x-3)}$.

OR

Evaluate $\int \frac{\sec ^{2} x}{\tan ^{2} x-4 \tan x+7} d x$
Q12 Find the general solution of the differential equation $x^{2} d y-\left(x^{2}+x y+y^{2}\right) d x=0$.
OR
Find the general solution of the differential equation $\sec ^{2} x \tan y d x-\sec ^{2} y \tan x d y=0$.
Bag I contains 3 red and 4 white balls. Bag II contains 7 red and 5 white balls. A bag is selected at random and a ball is drawn from it, which is found to be red. Find the probability that ball is drawn from bag II.

Section - D

Q14 Solve the following system of linear equations by matrix method :
$2 x+3 y-5 z=13 \quad, x-y+z=-2 \quad, 3 x+2 y-z=8$

OR

Express $A=\left[\begin{array}{lll}2 & 3 & 5 \\ 0 & 2 & 9 \\ 3 & 2 & 8\end{array}\right]$ as the sum of a symmetric matrix and a skew-symmetric matrix.
Q15 Find the shortest distance between the lines

$$
\vec{r}=6 \hat{i}-\hat{j}+3 \hat{k}+\lambda(\hat{i}+3 \hat{j}+2 \hat{k}) \text { and } \vec{r}=9 \hat{i}+\hat{j}-4 \hat{k}+\mu(i) \hat{i}-2 \hat{j}+\hat{k})
$$

OR
Find the foot of perpendicular drawn from the point $(2,-3,5)$ on the plane $3 x+4 y-2 z=20$
Solve the following linear programming problem graphically:
Maximize and minimize $Z=4 x+3 y$ subject to the constraints

$$
x+y \leq 8, \quad 4 x+y \geq 8, \quad x-y \geq 0, \quad x \geq 0 \quad, y \geq 0
$$

OR

Solve the following linear programming problem graphically:
Maximize and minimize $Z=5 x+2 y-2$ subject to the constraints

